Ozone Testing

What is ozone?

Ozone is a powerful and fast-acting disinfectant and can purify water 3000 times faster than chlorine. Ozone disinfection works by breaking through the cell membrane of the microorganisms and destroying the DNA, enzymes and proteins inside the bacterial cell. This kills the cell by a process known as lysis.

Unlike chlorine, there are no disinfection by-products (DBPs) associated with ozone disinfection as ozone breaks down into oxygen.

Ozone is unstable, and although it is produced naturally in the environment by reactions with UV light, industrially it must be made using an in-situ generator. If ozone is used as a disinfectant, it must be monitored regularly to ensure adequate disinfection and effective removal of harmful pathogens from the water.

Ozone in different applications

Ozone in drinking water

Ozone is widely used in drinking water processing plants; it is an extremely effective disinfectant against bacteria and viruses. It requires little contact time, reducing treatment time, whilst leaving behind no chemical residues. Ozone must be monitored to ensure adequate disinfection of the water; if ozone levels are too low harmful pathogens may not be killed.

Ozone can be used alone, or with other disinfectants. It is often used as a pre-treatment prior to sand or active carbon filtration. Ozone disinfection remains in the distribution system for a shorter time and is therefore less able to suppress regrowth of harmful microorganisms. Therefore, ozone is sometimes used in combination with other disinfectants such as chloramines.

When ozone is used in the treatment of drinking water, a desired concentration of ozone is chosen. Then a dose is given for a set amount of time to leave the desired residual. The WHO state that a residual value of around 0.5 mg/L after a contact time of up to 20 minutes is typically used. The doses required for this are usually in the range 2–5 mg/L but will vary depending on the type of water.

Ozone in pools and spas

In pools and spas ozone can be used as a primary disinfectant; it is used as an alternative to chlorine-based disinfectants. It is particularly effective at killing Cryptosporidium and Giardia, both of which are unaffected by chlorine disinfection. Ozone is often used with chlorine or bromine as a secondary disinfectant due to the difficulty in maintaining constant residual.

A benefit of using ozone as a pool or spa disinfectant is that it does not affect the pH of the water. However, it does have a large initial cost, but when using ozone, the free chlorine levels can be much lower (0.5 mg/L for a pool, and 2–3 mg/L in spas and hydrotherapy pools).

Ozone needs to be monitored in pools and spas because if levels are too low it could mean there is inadequate disinfection in the water. Ozone should be tested daily in pools and spas. For spas and hot tubs, industry guidelines recommend ozone levels should be in the range 1.2 – 1.5 mg/L O3. For more information on spa and hot tub testing take a look at our testing your hot and spa guide.

Ozone in wastewater

Ozone can be used in the wastewater industry for odour abatement (reduction of smell). It can also be used to remove heavy metals from water bodies. Ozone is often applied with UV light or ultrasound technology to increase the rate of reaction and decrease the required contact time. Ozone needs to be monitored in wastewater because if levels are too low it could mean there is inadequate disinfection in the water, and harmful pathogens may not be killed. Regulations for ozone levels in wastewater will be specific to local areas.

How to test for ozone in water

Ozone in water can be measured using our top of the range multiparameter 7500 photometer. The Photometer 7500 utilises the globally recognised DPD method making testing quick and easy. Up to 500 data sets can be stored for full traceability of results and data can be managed via the Aqua Pal App and Palintest Portal through USB or Bluetooth® connection.

The Compact Ozone Meter provides rapid analysis of ozone and is ideal for field operatives in drinking water, wastewater and bottled water treatment. This single parameter photometer utilises a long cuvette pathlength to deliver excellent resolution at low levels.

RELATED PRODUCTS

Photometer 7500 product image
Photometer 7500

The Photometer 7500 is Palintest’s top range photometer covering all major water quality parameters, with more than 80 test methods.

View Products
Photometer 7100 product image
Photometer 7100

The Photometer 7100 covers the full range of test parameters, enabling effective water quality monitoring.

View Products
Compact Ozone Meter product image
Compact Ozone Meter

The Compact Ozone Meter provides rapid analysis of ozone, ideal for field operatives in drinking water, wastewater and bottled water treatment.

View Products